Resource Communication: ForestAz - Using Google Earth Engine and Sentinel data for forest monitoring in the Azores Islands (Portugal)

Keywords: Sentinel-1, Sentinel-2, Copernicus, Vegetation Indices, Forest Mapping, Forest Management, Aboveground Carbon

Abstract

Aim of study: ForestAz application was developed to (i) map Azorean forest areas accurately through semiautomatic supervised classification; (ii) assess vegetation condition (e.g., greenness and moisture) by computing and comparing several spectral indices; and (iii) quantitatively evaluate the stocks and dynamics of aboveground carbon (AGC) sequestrated by Azorean forest areas.

Area of study: ForestAz focuses primarily on the Public Forest Perimeter of S. Miguel Island (Archipelago of the Azores, Portugal), with about 3808 hectares.

Material and methods: ForestAz was developed with Javascript for the Google Earth Engine platform, relying solely on open satellite remote sensing data, as Copernicus Sentinel-1 (Synthetic Aperture Radar) and Sentinel-2 (multispectral).

Main results: By accurately mapping S. Miguel island forest areas using a detailed species-based vegetation mapping approach; by allowing frequent and periodic monitoring of vegetation condition; and by quantitatively assessing the stocks and dynamics of AGC by these forest areas,  this remote sensing-based application may constitute a robust and low-cost operational tool able to support local/regional decision-making on forest planning and management.

Research highlights: This collaborative initiative between the University of the Azores and the Azores Regional Authority in Forest Affairs was selected to be one of the 99 user stories by local and regional authorities described in the catalog edited by the European Commission, the Network of European Regions Using Space Technologies (NEREUS Association), and the European Space Agency (ESA).

Downloads

Download data is not yet available.

References

Ayazi R, d'Auria I, Tassa A, Turpin J (Eds.), 2018. The ever growing use of Copernicus across Europe's regions: a selection of 99 user stories by local and regional authorities. European Commission, NEREUS, European Space Agency. 142 pp.

Belgiu M, Dragut L, 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS J Photogr Remote Sens 114: 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Breiman L, 2011. Random forests. Mach Learn 45: 5-32. https://doi.org/10.1023/A:1010933404324

Calado H, Braga A, Moniz F, Gil A, Vergílio M, 2015. Spatial planning and resource use in the Azores. Mitig Adapt Strateg Glob Chang 20: 1079-1095. https://doi.org/10.1007/s11027-013-9519-2

Congalton R, Green K, 2019. Assessing the accuracy of remotely sensed data: Principles and practices. CRC/Lewis Press, Boca Raton, FL, USA. 137 pp. https://doi.org/10.1201/9780429052729

Feyen J, Wip G, Crabbe S, Wortel V, Sari SP, Van Coillie F, 2021, Mangrove species mapping and above-ground biomass estimation in Suriname based on fused Sentinel-1 and Sentinel-2 imagery and national forest inventory data, 2021 IEEE Int Geosci & Remote Sens Symp IGARSS, pp. 6072-6075, https://doi.org/10.1109/IGARSS47720.2021.9555037

Foody GM, 2002. Status of land cover classification accuracy assessment. Remote Sens Environ 80: 185-201. https://doi.org/10.1016/S0034-4257(01)00295-4

Freitas SR, Mello MC, Cruz CB, 2005. Relationships between forest structure and vegetation indices in Atlantic Rainforest. Forest Ecol Manage 218(1-3): 353-362. https://doi.org/10.1016/j.foreco.2005.08.036

Gao BC, 1996. NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58: 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3

Gil A, 2005. Plano de gestão da zona de protecção especial Pico da Vara/Ribeira do Guilherme. SPEA, Lisboa. https://www.spea.pt/wp-content/uploads/2020/05/planodegestaozpepicodavara_compressed.pdf

Gil A, Fonseca C, Lobo A, Calado H, 2012. Linking GMES space component to the development of land policies in outermost regions - The Azores (Portugal) case-study. Eur J Remote Sens 45: 263-281. https://doi.org/10.5721/EuJRS20124524

Gil A, Yu Q, Abadi M, Calado H, 2014. Using ASTER multispectral imagery for woody invasive species mapping in Pico da Vara Nature Reserve (S. Miguel island, Portugal). Rev Arvore 38: 391-401. https://doi.org/10.1590/S0100-67622014000300001

Gil A, Fernández-Urrutia M, Isidoro A, Medeiros V, Pacheco JL, 2018. Sentinel-based Azores Regional Forest Inventory. In: The ever growing use of Copernicus across Europe's regions: A selection of 99 user stories by local and regional authorities; Ayazi R, d'Auria I, Tassa A, Turpin J (eds). pp: 102-103. European Commission, NEREUS, European Space Agency.

Glenn EP, Huete AR, Nagler PL, Nelson SG, 2008. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors 8(4): 2136-2160. https://doi.org/10.3390/s8042136

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R, 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ 202: 18-27. https://doi.org/10.1016/j.rse.2017.06.031

IPCC, 2000. Land use, land-use change, and forestry; Watson RT et al. (Eds.) Cambridge Univ Press, UK. 375 pp.

Jahromi MN, Jahromi MN, Zolghadr-Asli B, Pourghasemi HR, Alavipanah SK, 2021. Google Earth Engine and its application in forest sciences. In: Spatial modeling in forest resources management; Shit PK et al. (eds), pp: 629-649. Environ Sci Eng book series. Springer, Cham. https://doi.org/10.1007/978-3-030-56542-8_27

Joshi N, Baumann M, Ehammer A, Fensholt R, Grogan K, Hostert P et al., 2016. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens 8: 70. https://doi.org/10.3390/rs8010070

Kaplan G, 2021. Broad-leaved and coniferous forest classification in google earth engine using Sentinel imagery Environ Sci Proc 3(1): 64. https://doi.org/10.3390/IECF2020-07888

Key CH, Benson N, Ohlen D, Howard SM, Zhu Z, 2002. The normalized burn ratio and relationships to burn severity: ecology, remote sensing and implementation. Proc 9th Biennial of Remote Sensing Appl Conf, San Diego (USA), April 8-12.

Li J, Wang L, Fang P, Xu W, Dai Q, 2021. Forest type mapping at a regional scale based using multitemporal Sentinel-2 imagery. IEEE Int Geoscience and Remote Sensing Symp IGARSS, pp. 4228-4231. https://doi.org/10.1109/IGARSS47720.2021.9554083

Li R, Wang L, Ou G, Xu W, Dai Q, 2021. Mapping forest type with multi-seasonal Landsat data and multiple environmental factors in Yunnan province based on Google Earth engine. IEEE Int Geoscience and Remote Sensing Symp IGARSS, pp. 6468-6471. https://doi.org/10.1109/IGARSS47720.2021.9554563

Main R, Azong Cho M, Mathieu R, O'Kennedy MM, Ramoelo A, Koch S, 2011. An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS J Photogramm Remote Sens 66: 751-761. https://doi.org/10.1016/j.isprsjprs.2011.08.001

Main-Knorn M, Pflug B, Louis J, Debaecker V, Müller-Wilm U, Gascon F, 2017. Sen2Cor for Sentinel-2. In: Image and Signal Processing for Remote Sensing XXIII, Vol. 10427, p. 1042704. Int Soc for Optics and Photonics. https://doi.org/10.1117/12.2278218

Massetti A, Gil A, 2020. Mapping and assessing land cover/land use and aboveground carbon stocks rapid changes in small oceanic islands' terrestrial ecosystems: A case study of Madeira Island, Portugal (2009-2011). Remote Sens Environ 239 (1116252): 1-11. https://doi.org/10.1016/j.rse.2019.111625

Mngadi M., Odindi J, Peerbhay K, Mutanga O, 2021. Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping. Geocart Int 36(1): 1-12. https://doi.org/10.1080/10106049.2019.1585483

Mullissa A, Vollrath A, Odongo-Braun C, Slagter B, Balling J, Gou Y et al., 2021. Sentinel-1 SAR backscatter analysis ready data preparation in Google Earth engine. Remote Sens 13: 1954. https://doi.org/10.3390/rs13101954

Rasul A, Balzter H, Ibrahim GRF, Hameed HM, Wheeler J, Adamu B et al., 2018. Applying built-up and bare-soil indices from Landsat 8 to cities in dry climates. Land 7: 81. https://doi.org/10.3390/land7030081

Rouse JW, Haas RH, Schell JA, Deering DW, 1974. Monitoring vegetation systems in the great plains with ERTS. Third ERTS-1 Symp, pp: 309-317. NASA, Washington DC, USA.

Sánchez-Ruiz S, Moreno-Martínez A, Izquierdo-Verdiguier E, Chiesi M, Maselli F, Gilabert MA, 2019. Growing stock volume from multi-temporal landsat imagery through google earth engine. Int J Appl Earth Obs Geoinf 83: 101913. https://doi.org/10.1016/j.jag.2019.101913

Schultz M, Clevers JG, Carter S, Verbesselt J, Avitabile V, Quang HV, Herold M, 2016. Performance of vegetation indices from Landsat time series in deforestation monitoring. Int J Appl Earth Obs Geoinf 52: 318-327. https://doi.org/10.1016/j.jag.2016.06.020

Singh S, Tiwari KC, 2021. Exploring the optimal combination of image fusion and classification techniques. Remote Sens Appl Soc Environ 24: 100642. https://doi.org/10.1016/j.rsase.2021.100642

Sun Y, Qin Q, Ren H, Zhang T, Chen S, 2019. Red-edge band vegetation indices for leaf area index estimation from Sentinel-2/MSI imagery. IEEE T Geosci Remote Sens 58(2): 826-840. https://doi.org/10.1109/TGRS.2019.2940826

Tassi A, Gil A, 2020. A low-cost Sentinel-2 data and Rao's Q diversity index-based application for detecting, assessing and monitoring coastal land-cover/land-use changes at high spatial resolution. J Coast Res 95(Spec): 1315-1319. https://doi.org/10.2112/SI95-253.1

Tucker CJ, 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8: 127-150. https://doi.org/10.1016/0034-4257(79)90013-0

Veci L, Lu J, Prats-Iraola P, Scheiber R, Collard F, Fomferra N, Engdahl M, 2014. The Sentinel-1 toolbox. Proc IEEE Int Geosci Remote Sens Symp (IGARSS 2014), Québec (Canada), July 13-18. pp: 1-3.

Venkatappa M, Sasaki N, Anantsuksomsri S, Smith B, 2020. Applications of the Google Earth engine and phenology-based threshold classification method for mapping forest cover and carbon stock changes in Siem Reap province, Cambodia. Remote Sens 12: 3110. https://doi.org/10.3390/rs12183110

Wittke S, Yu X, Karjalainen M, Hyyppä J, Puttonen E, 2019. Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest. Int J Appl Earth Obs Geoinf 76: 167-178. https://doi.org/10.1016/j.jag.2018.11.009

Xue J, Su B, 2017. Significant remote sensing vegetation indices: A review of developments and applications. J Sens: 1353691. https://doi.org/10.1155/2017/1353691

Yuan L, Zhu G, Xu C, 2020. Combining synthetic aperture radar and multispectral images for land cover classification: a case study of Beijing, China. J Appl Remote Sens 14(2): 026510. https://doi.org/10.1117/1.JRS.14.026510

Published
2022-07-11
How to Cite
Fernández-UrrutiaM., & GilA. (2022). Resource Communication: ForestAz - Using Google Earth Engine and Sentinel data for forest monitoring in the Azores Islands (Portugal). Forest Systems, 31(2), eRC01. https://doi.org/10.5424/fs/2022312-18929
Section
Resource communications